Time-dependence of bioenergy emission intensities and strategies to reduce pay-back times

David Neil Bird
Task 38 Expert Meeting
Nov. 16 – 17 2012, Vienna

Outline

- Introduction
- Bioenergy examples
- Sensitivity
- Policy criteria & indicators
- Conclusions

Disclaimer
The views expressed herein are those of the author only. They should in no way be taken to reflect the official opinion of the institutions for which the author works or organizations with which the author may be affiliated.
Introduction

1. Understand usefulness of emission intensities
 - Simple indicators for policy makers
 - Consumption-based accounting systems
2. Develop strategies to reduce the payback time
3. Understand the risks in estimating impacts of bioenergy systems
 - Will the “carbon-investment” bring “carbon dividends”?
4. Bioenergy type-profiles
 - Use versus decay
 - Use → regrowth
 - Growth → use
 - Annual crop (with iLUC)

Use versus Decay
Forest residues

- Bioenergy System
 - Biorefinery producing bioethanol and phenols
 - Approx. 30% conversion efficiency
 - Supply chain emissions = 18 gCO2/MJ
- Reference System
 - Residues decay, average lifetime = 12.9 years
 - Gasoline, process emissions = 85 gCO2/MJ

From Cherubini et al – Task 38 Case Study
In press.
Use → Regrowth
Live biomass (trees) without risk

Bioenergy System
- Forest – 20 year rotation
- Biorefinery producing bioethanol and phenols
- Approx. 30% conversion efficiency
- Supply-chain emissions = 18 gCO2/MJ

Reference System
- Continued growth of forest
- Gasoline, process emissions = 85 gCO2/MJ

Use → Regrowth
Live biomass (trees) with risk

Bioenergy System
- Forest – 20 year rotation
- Biorefinery producing bioethanol and phenols
- Approx. 30% conversion efficiency
- Supply-chain emissions = 18 gCO2/MJ

Reference System
- Continued growth of forest
- 2% risk of loss to fire annually (assumed)
- Gasoline, process emissions = 85 gCO2/MJ
Growth \(\rightarrow\) Use

New plantation

- **Bioenergy System**
 - New plantation – 20 year rotation
 - Biorefinery producing bioethanol and phenols
 - Approx. 30% conversion efficiency
 - Supply-chain emissions = 18 gCO₂/MJ
- **Reference System**
 - Gasoline, process emissions = 85 gCO₂/MJ

Annual Crop

With landuse change

- **Bioenergy System**
 - Sugar cane – based ethanol
 - Supply-chain emissions = 25 gCO₂/MJ
 - Direct land use change *fixed* so that payback time is 15 years
- **Reference System**
 - Gasoline, process emissions = 85 gCO₂/MJ
Sensitivity Technology

- **Bioenergy System**
 - Residues to wood chips to CHP
 - Approx. 27% conversion efficiency
 - Supply-chain emissions = 22 gCO2/MJ

- **Reference System**
 - Residues decay, average lifetime = 12.9 years
 - Coal burning CHP
 - Conversion efficiency 43.5%
 - Emissions = 248 gCO2/MJ

From GEMIS

Sensitivity Fossil energy replaced

- **Bioenergy System**
 - Residues to wood chips to CHP
 - Approx. 27% conversion efficiency
 - Supply-chain emissions = 22 gCO2/MJ

- **Reference System**
 - Residues decay, average lifetime = 12.9 years
 - Natural gas CHP
 - Conversion efficiency 42.3%
 - Emissions = 173 gCO2/MJ

From GEMIS
Sensitivity Efficiency

- **Bioenergy System**
 - Residues to wood chips to CHP
 - Approx. 42% conversion efficiency
 - Supply-chain emissions = 22 gCO2/MJ

- **Reference System**
 - Residues decay, average lifetime = 12.9 years
 - Natural gas CHP
 - Conversion efficiency 42.3%
 - Emissions = 173 gCO2/MJ

From GEMIS

Policy Criteria & Indicators

- Current policy provides incentives for bioenergy systems that reach a specific emission intensity
- Emission intensities are time dependent
Policy Criteria & Indicators

- Policy should provide incentives for bioenergy that meets specific
 1. Conversion emission intensity
 2. Supply-chain emission intensity
 3. Payback time or recovery time
 \[T_{\text{payback}} = f(I_B, I_S, I_F, T_{\text{return}}) \]
 - \(I_B \): Conversion emission intensity
 - \(I_S \): Supply-chain emission intensity
 - \(I_F \): Displaced fossil fuel intensity
 - \(T_{\text{return}} \): Recovery time (e.g. decay rate, rotation length)

Conclusions

- Emission intensities of bioenergy systems are time dependent
- Payback period can be minimised by using bioenergy
 - From purpose grown biomass (e.g. new short rotation forests)
 - To replace appropriate technology
 - To replace carbon intense fossil energy
 - With high efficiency
 - With quick recovery or natural return
- Policy criteria & indicators should consider
 - Conversion emission intensity
 - Supply-chain emission intensity
 - Payback time or rotation length / decay rate
- Risks will be different for different bioenergy type-profiles
Thank-you for your attention
neil.bird@joanneum.at

www.smartforests.at

IEA Bioenergy Task 38 – www.ieabioenergy-task38.org